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Generative adversarial network framework: Adversarial losses to shape representations:



Part I: Disentangling content and pose with an adversarial loss
Denton and Birodkar. Unsupervised Learning of Disentangled Representations 
from Video. NIPS, 2017

Part II: Survey of adversarial losses in feature space



Time invariant information: Lighting, background, identity, clothing

Time varying information: Pose of body

Disentangled Representation Net (DrNet)

Disentangling auto-encoder that factorizes image sequences into 
temporally constant (content) and temporally varying (pose) 
components



Content encoder

Time invariant 
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Pose encoder

Time varying 
information:
Pose of body

DrNet: two seperate encoders



DrNet: training 

● Reconstruction loss drives training

● Similarity loss makes content vectors invariant across time

● Adversarial loss enforces pose vectors to only contain info that changes 
across time
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Don’t want pose vector encoding 
anything constant across time

Content vector should contain 
anything predictable from past frame



DrNet: training 

● Reconstruction loss drives training

● Similarity loss makes content vectors invariant across time

● Adversarial loss enforces pose vectors to only contain info that changes 
across time



Content vectors should be invariant across time
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l2 similarity loss on temporally nearby content vectors



DrNet: training 

● Reconstruction loss drives training

● Similarity loss makes content vectors invariant across time

● Adversarial loss enforces pose vectors to only contain info that changes 
across time



Should not be able to distinguish which 
video clip a pose vector comes from



Different 
video 

Target 1
(Same 
scene)

Target 0
(Different 

scene)

Pose encoder: Scene discriminator: 

L
BCE

L
BCE

Same 
video 



Different 
video 

Target 1
(Same 
scene)

Target 0
(Different 

scene)

Pose encoder: Scene discriminator: 

L
BCE

L
BCE

Same 
video Pose 

encoder 
held fixed



Pose encoder: 

Same 
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Scene discriminator held fixed, only used 
to compute gradients for pose encoder

Train pose encoder to produce pose vectors that make the 
discriminator maximally uncertain about the content of the video 
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SUNCG dataset: rotating objects

S. Song, F. Yu, A. Zeng, A. X. Chang, M. Savva, and T. Funkhouser. Semantic scene comp

● 280 chair models, 5 elevations, large variability

● Video sequence: camera rotates around chair 
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Can transfer content from one 
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Image synthesis by analogy



Interpolation in pose space



● A representation that factorizes into temporally constant and temporally 
varying components is particularly useful for video prediction

● Instead of modeling how the entire scene changes, only need to predict the 
temporally varying component

● Prediction done entirely in latent pose space 

Video prediction
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Train LSTM to predict future pose vectors 
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Don’t have to worry about content vectors - 
they are fixed across time by design
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Content vector from 
any past frame Feed predicted pose vectors back into model

Test time: generating a video sequence
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Decoder maps 
back to pixels:



DrNet video prediction takeaways:
● Prediction done entirely in latent pose space

○ Generated images never fed recursively back into the model

● Small errors in pixel predictions don’t propagate through time
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Moving MNIST: generating forever...

● Trained model to condition on 5 
frames and generate 10 frames into 
the future

● Can unroll model indefinitely 
Green box: Ground truth input (t = 1, ... 5)
Red box: generated frames (t = 6, ..., 500)

● Content vector fixed across time - 
helps deal with occlusions

● Digits colored differently so 
content/pose factorization exists



● Simple dataset of real-world videos

● Six actions

● Fairly uniform 
backgrounds

C. Schuldt, I. Laptev, and B. Caputo. Recognizing human actions: A local svm approach. In Pattern Recognition, 2004. 
ICPR 2004. Proceedings of the 17th International Conference on, volume 3, pages 32–36. IEEE, 2004.

KTH dataset



Motion-content net separately models 
motion and content in video sequences

Trained with combined MSE + GAN loss

Baseline: MCNet (Villegas et al. 2017)

[Villegas et al. Decomposing motion and content for natural video sequence prediction. In ICLR, 2017.]
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[1] Villegas et al. Decomposing motion and content for natural video sequence prediction. In ICLR, 2017.

[1]
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KTH long term video generation
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KTH long term video generation



KTH long term video generation



KTH nearest neighbours



KTH nearest neighbours



● This adversarial disentangling technique is very general

  

● Could apply to other datasets where weak labeling is available

○ Only need grouped data - temporal coherence of videos gives us ‘labels’ 
for free



Part I: Disentangling content and pose with an adversarial loss
Denton and Birodkar. Unsupervised Learning of Disentangled Representations 
from Video. NIPS, 2017

Part II: Survey of adversarial
losses in feature space
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Domain adaptation

Labelled examples from source domain, 
few or no labels from target domain

Source domain Target domain



Domain adaptation

Source encoder

Classifier

Classification loss Labelled examples from source domain, 
few or no labels from target domain

Target domain



Domain adaptation

Target encoderSource encoder

Domain 
discriminatorClassifier

Classification loss Adversarial loss

Adversarial loss can be used to 
learn domain invariant features, 
allowing source classifier to 
transfer to target domain



Domain adaptation

Target encoderSource encoder

Domain 
discriminatorClassifier

Classification loss Adversarial loss

Gradient reversal [Ganin and 
Lempitsky, 2015]

Label flip [Tzeng et al. 2017]

Uniform target [Tzeng et al. 2015]



Encoder
network

Learning fair representations

x

Predict label
Predict sensitive 
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● Closely related to problem of domain 
adaptation
○ source/transfer domain vs. demographic 

groups

● Different formulations of adversarial objectives 
achieve different notions of fairness
○ Edwards & Storkey, 2016
○ Beutel et al. 2017
○ Zhang et al. 2018
○ Madras et al. 2018



Independent components

● Discriminate marginal distribution vs. product of marginals:   q(z1, ..., zn)  vs.      q(zi)

● Earlier work on discrete code setting by Schmidhuber (1992)

Kim and Mnih. Disentangling by Factorising. 
ICML, 2018



Prior distributions of generative models

Adversarial autoencoders: 
Match aggregate approx posterior q(z)  
[Makhzani et al. 2016]

Adversarial variational bayes: 
Match approx posterior q(z|x) 
[Mescheder et al. 2017]

Adversarial feature learning: 
GAN loss in image space and latent space
[Dumoulin et al. 2017; Donahue et al. 2017]
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