Generative Adversarial Imitation Learning

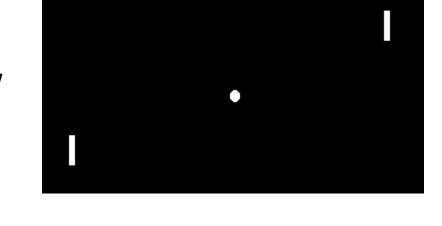
Stefano Ermon

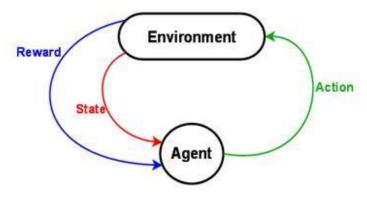
Joint work with Jayesh Gupta, Jonathan Ho, Yunzhu Li, and Jiaming Song

Stanford University

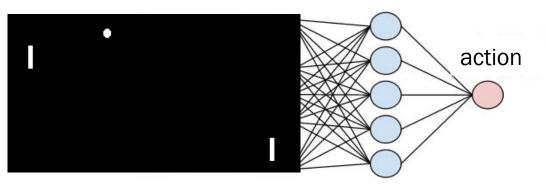
Reinforcement Learning

- Goal: Learn policies
- High-dimensional, raw observations



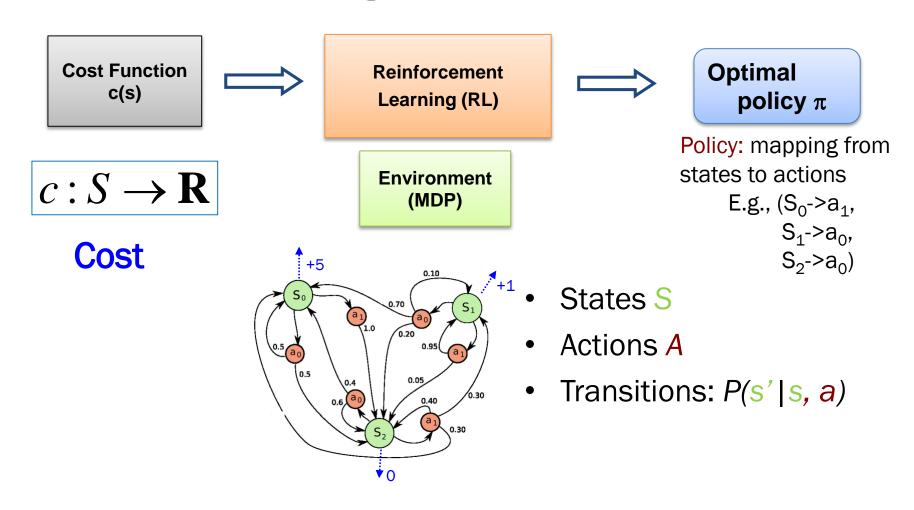


RL needs cost signal



Reinforcement Learning

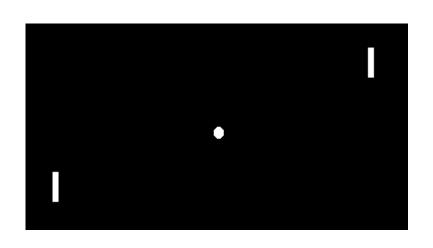
$$RL(c) = \underset{\pi \in \Pi}{\operatorname{arg\,min}} -H(\pi) + \mathbb{E}_{\pi}[c(s, a)]$$



Imitation

Input: expert behavior generated by π_E

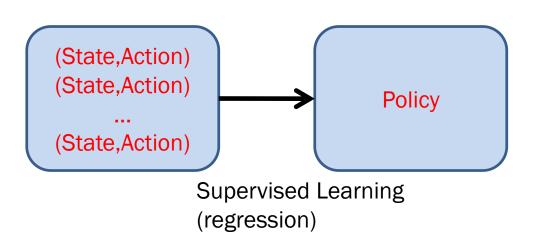
$$\{(s_0^i, a_0^i, s_1^i, a_1^i, \dots)\}_{i=1}^n \sim \pi_E$$



Goal: learn cost function (reward) or policy

(Ng and Russell, 2000), (Abbeel and Ng, 2004; Syed and Schapire, 2007), (Ratliff et al., 2006), (Ziebart et al., 2008), (Kolter et al., 2008), (Finn et al., 2016), etc.

Behavioral Cloning



- Small errors compound over time (cascading errors)
- Decisions are purposeful (require planning)

Inverse RL

- An approach to imitation
- Learns a cost c such that

$$\pi_E = \operatorname*{arg\,max}_{\pi} \mathbb{E}_{\pi}[c(s,a)]$$

Problem setup

$$RL(c) = \underset{\pi \in \Pi}{\operatorname{arg\,min}} -H(\pi) + \mathbb{E}_{\pi}[c(s, a)]$$

Cost Function c(s)

Reinforcement Learning (RL)

Optimal policy π

Environment (MDP)

Cost Function c(s)

Inverse Reinforcement Learning (IRL)

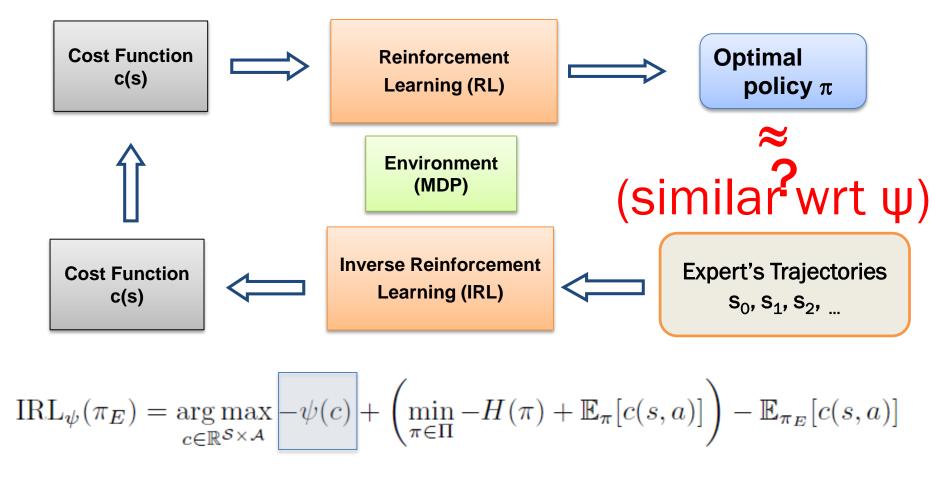
Expert's Trajectories s_0, s_1, s_2, \dots

$$\underset{c \in \mathcal{C}}{\operatorname{maximize}} \left(\underset{\pi \in \Pi}{\min} - H(\pi) + \mathbb{E}_{\pi}[c(s, a)] \right) - \mathbb{E}_{\pi_E}[c(s, a)]$$

(Ziebart et al., 2010; Rust 1987) Everything else has high cost

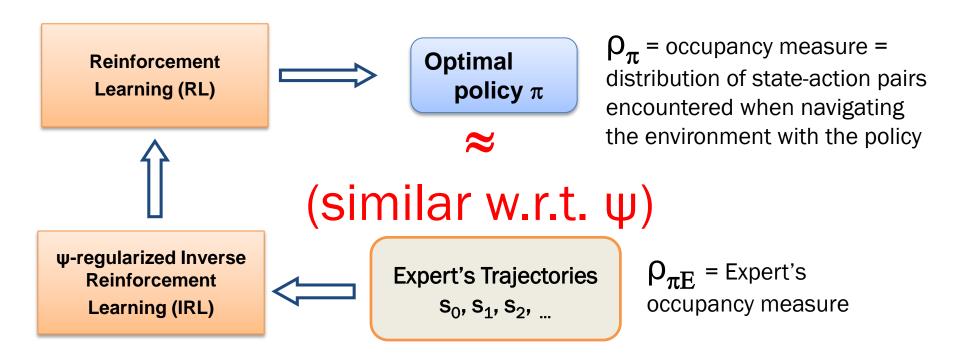
Expert has small cost

Problem setup



Convex cost regularizer

Combining RL•IRL



Theorem: ψ -regularized inverse reinforcement learning, implicitly, seeks a policy whose occupancy measure is close to the expert's, as measured by ψ^* (convex conjugate of ψ)

$$RL \circ IRL_{\psi}(\pi_E) = \arg\min_{\pi \in \Pi} -H(\pi) + \psi^*(\rho_{\pi} - \rho_{\pi_E})$$

Takeaway

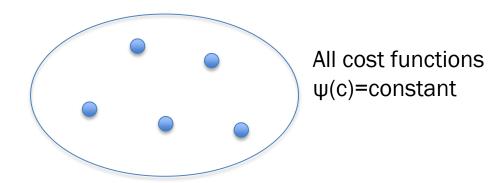
Theorem: ψ -regularized inverse reinforcement learning, implicitly, seeks a policy whose occupancy measure is close to the expert's, as measured by ψ^*

- Typical IRL definition: finding a cost function c such that the expert policy is uniquely optimal w.r.t. c
- Alternative view: IRL as a procedure that tries to induce a policy that matches the expert's occupancy measure (generative model)

Special cases

$$RL \circ IRL_{\psi}(\pi_E) = \arg\min_{\pi \in \Pi} -H(\pi) + \psi^*(\rho_{\pi} - \rho_{\pi_E})$$

- If $\psi(c)$ =constant, then $\rho_{\tilde{\pi}} = \rho_{\pi_E}$
 - Not a useful algorithm. In practice, we only have sampled trajectories
- Overfitting: Too much flexibility in choosing the cost function (and the policy)



Towards Apprenticeship learning

- Solution: use features f_{s,a}
- Cost c(s,a) = $\theta \cdot f_{s,a}$

$$\operatorname{IRL}_{\psi}(\pi_E) = \underset{c \in \mathbb{R}^{\mathcal{S} \times \mathcal{A}}}{\operatorname{arg\,max}} - \psi(c) + \left(\underset{\pi \in \Pi}{\min} - H(\pi) + \mathbb{E}_{\pi}[c(s, a)] \right) - \mathbb{E}_{\pi_E}[c(s, a)]$$

Only these "simple" cost functions are allowed

$$\psi(c) = \infty$$
Linear in features
$$\psi(c) = 0$$

All cost functions

Apprenticeship learning

For that choice of ψ, RL₀IRL_ψ framework gives apprenticeship learning

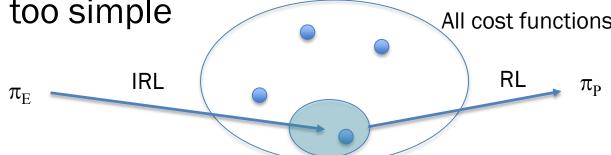
$$RL \circ IRL_{\psi}(\pi_E) = \arg\min_{\pi \in \Pi} -H(\pi) + \psi^*(\rho_{\pi} - \rho_{\pi_E})$$

- Apprenticeship learning: find π performing better than π_E over costs linear in the features
 - Abbeel and Ng (2004)
 - Syed and Schapire (2007)

Issues with Apprenticeship learning

- Need to craft features very carefully
 - unless the true expert cost function (assuming it exists) lies in C, there is no guarantee that AL will recover the expert policy
- RL $_{\Psi}(\pi_{E})$ is "encoding" the expert behavior as a cost function in C.
 - it might not be possible to decode it back if C is too simple

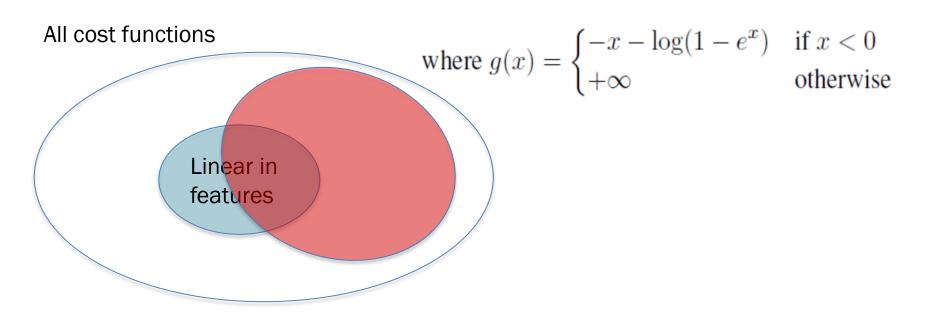
 All cost functions



Generative Adversarial Imitation Learning

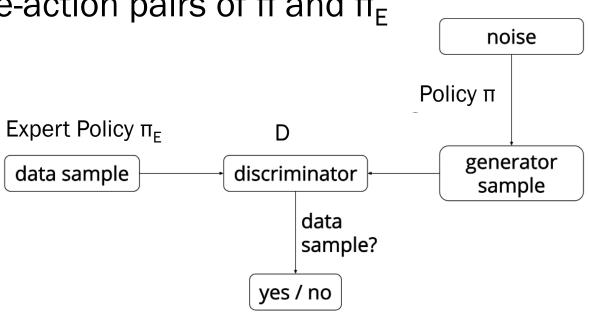
Solution: use a more expressive class of cost functions

$$\psi_{\text{GA}}(c) \triangleq \begin{cases} \mathbb{E}_{\pi_E}[g(c(s, a))] & \text{if } c < 0 \\ +\infty & \text{otherwise} \end{cases}$$



Generative Adversarial Imitation Learning

• ψ^* = optimal negative log-loss of the binary classification problem of distinguishing between state-action pairs of π and π_{F}



$$\psi_{\mathsf{GA}}^*(\rho_{\pi} - \rho_{\pi_E}) = \sup_{D \in (0,1)^{\mathcal{S} \times \mathcal{A}}} \mathbb{E}_{\pi}[\log(D(s,a))] + \mathbb{E}_{\pi_E}[\log(1 - D(s,a))]$$

Generative Adversarial Networks

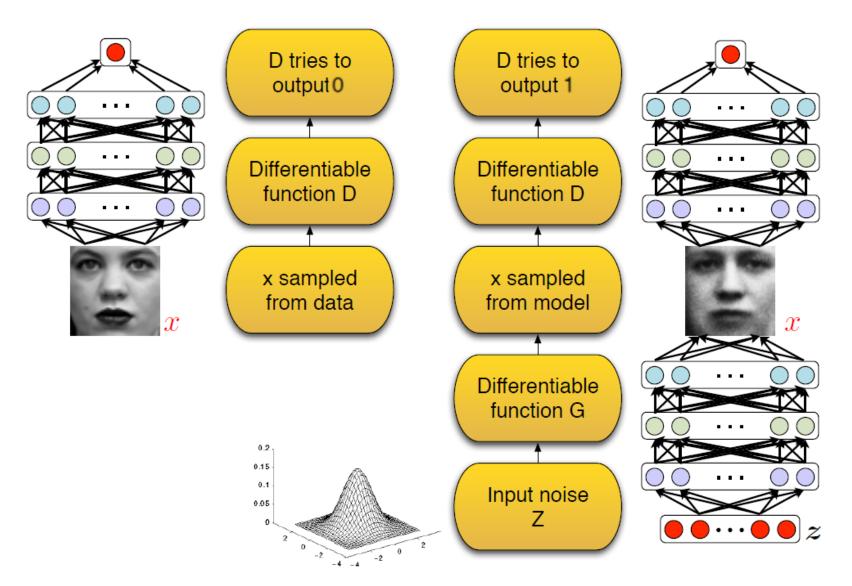
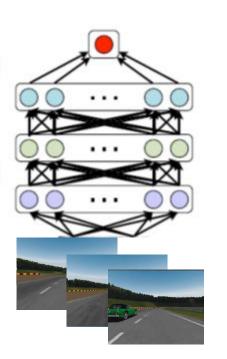


Figure from Goodfellow et al, 2014

GAIL

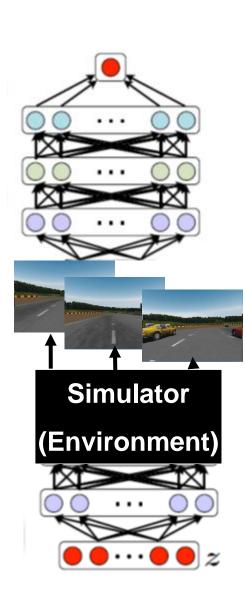


Differentiable function D

Sample from expert

Generator **G**

D tries to output 1 Differentiable function D Sample from model Black box simulator Differentiable function P



How to optimize the objective

- Previous Apprenticeship learning work:
 - Full dynamics model
 - Small environment
 - Repeated RL
- We propose: gradient descent over policy parameters (and discriminator)

J. Ho, J. K. Gupta, and S. Ermon. Model-free imitation learning with policy optimization. ICML 2016.

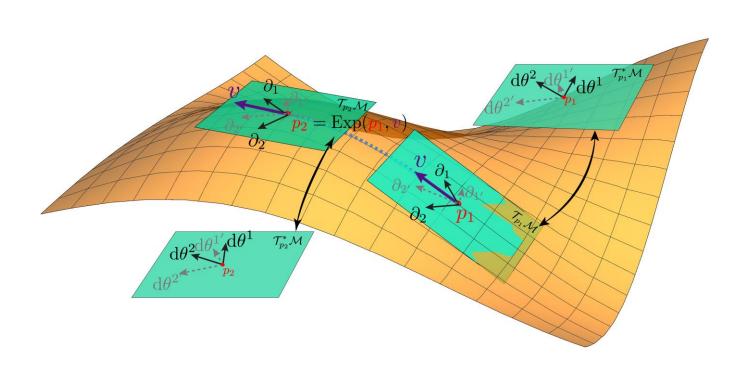
Properties

- Inherits pros of policy gradient
 - Convergence to local minima
 - Can be model free
- Inherits cons of policy gradient
 - High variance
 - Small steps required

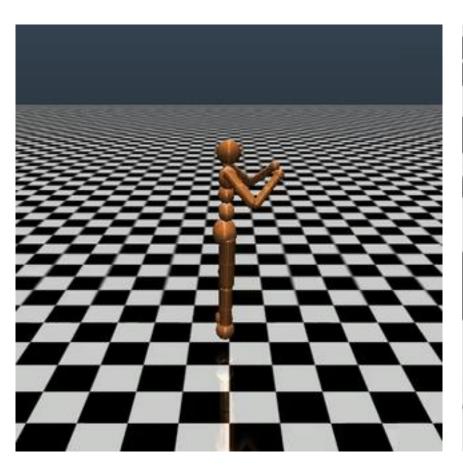
Properties

- Inherits pros of policy gradient
 - Convergence to local minima
 - Can be model free
- Inherits cons of policy gradient
 - High variance
 - Small steps required
- Solution: trust region policy optimization

TRPO



Results



Results

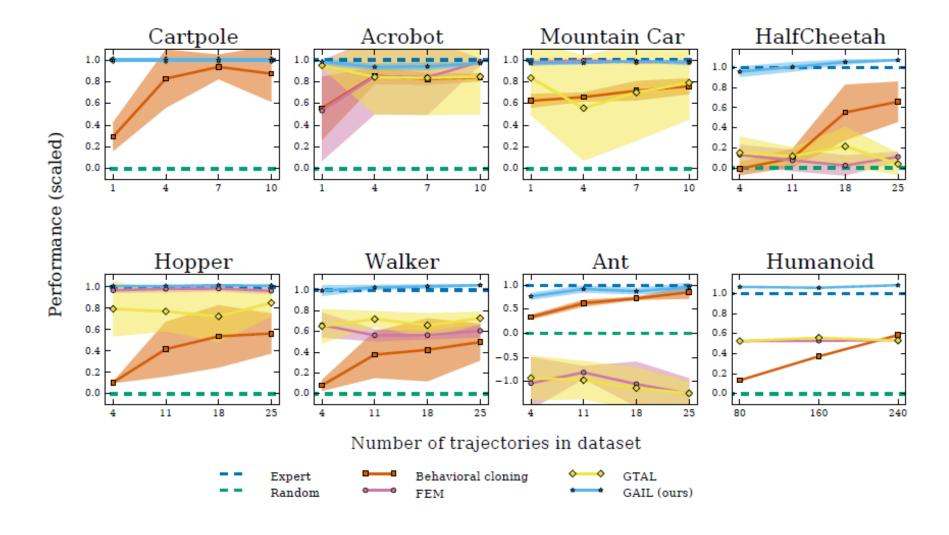
Input: driving demonstrations (Torcs)

Output policy:

From raw visual inputs

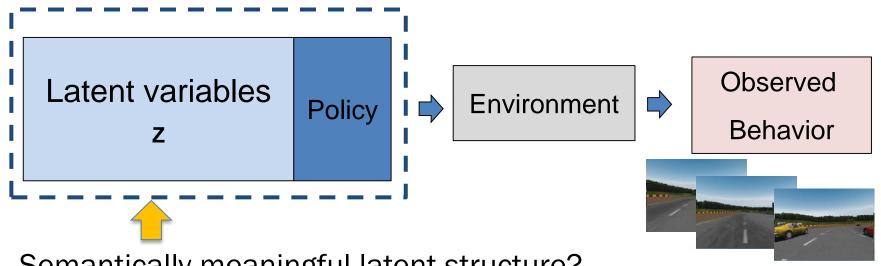
Li et al, 2017. InfoGAIL: Interpretable Imitation Learning from Visual Demonstrations

Experimental results

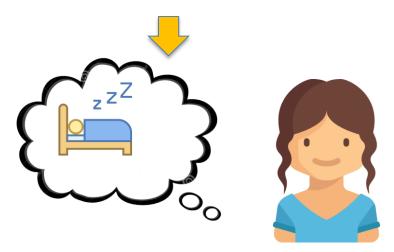


Latent structure in demonstrations

Human model



Semantically meaningful latent structure?



InfoGAIL

Latent structure

Add Smiling

Remove Smiling

Add Eyeglass

Remove Eyeglass Observed data

Infer structure

Maximize mutual information

Latent variables

Policy

Environment

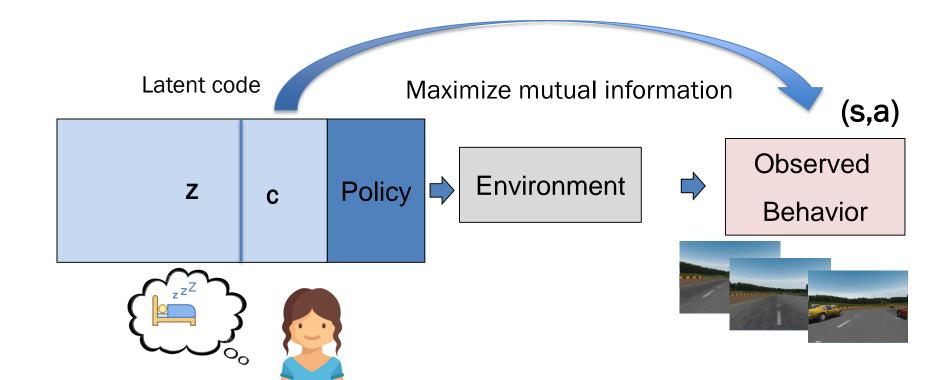
Observed

Behavior

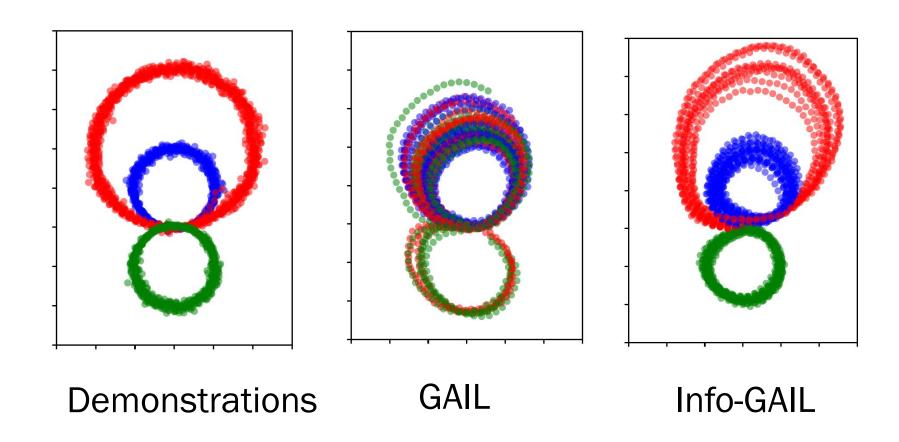
InfoGAIL

$$L_I(\pi_{\theta}, Q_{\psi}) = \mathbb{E}_{c \sim p(c), a \sim \pi_{\theta}(\cdot | s, c)} [\log Q_{\psi}(c | s, a)] + H(c)$$

$$\leq I(c; s, a)$$

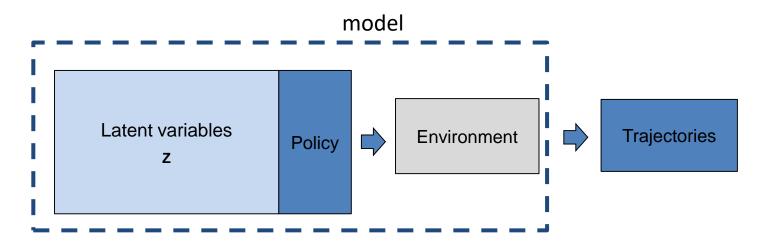


Synthetic Experiment



Li et al, 2017. InfoGAIL: Interpretable Imitation Learning from Visual Demonstrations

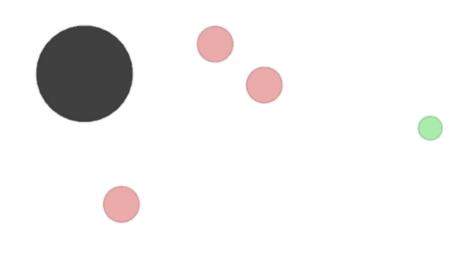
InfoGAIL



Pass left (z=0)

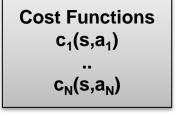
Pass right (z=1)

Multi-agent environments



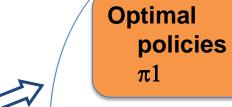
What are the goals of these 4 agents?

Problem setup



MA Reinforcement Learning (MARL)

Environment (Markov Game)

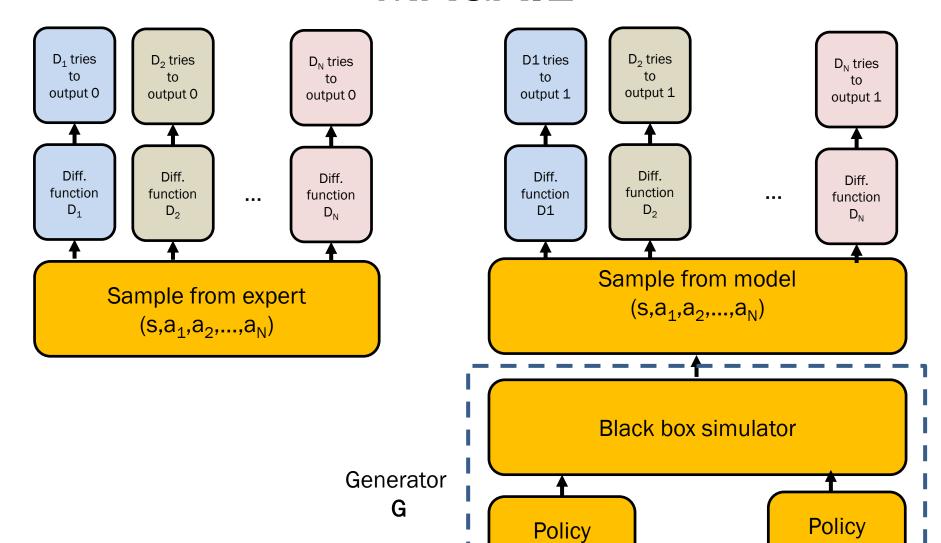


•••

Optimal policies πΚ

	R	L
R	0,0	10,10
L	10,10	0,0

MAGAIL

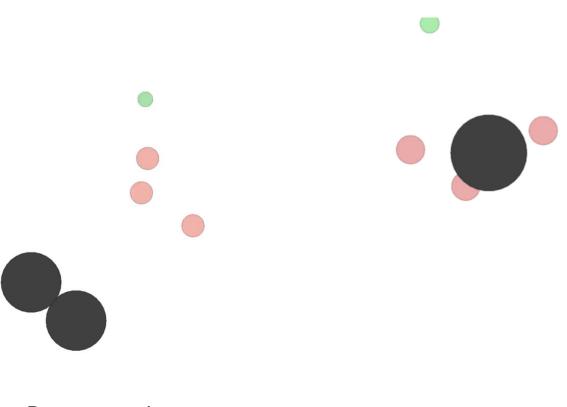


Agent 1

Agent N

Song, Ren, Sadigh, Ermon, Multi-Agent Generative Adversarial Imitation Learning

Environments



Demonstrations

MAGAIL

Environments

Conclusions

- IRL is a dual of an occupancy measure matching problem (generative modeling)
- Might need flexible cost functions
 - GAN style approach
- Policy gradient approach
 - Scales to high dimensional settings
- Towards unsupervised learning of latent structure from demonstrations