Generative Adversarial Imitation Learning

Stefano Ermon
Joint work with Jayesh Gupta, Jonathan Ho, Yunzhu Li, and Jiaming Song

Stanford University
Reinforcement Learning

• Goal: Learn policies
• High-dimensional, raw observations

RL needs cost signal
Reinforcement Learning

\[RL(c) = \arg \min_{\pi \in \Pi} -H(\pi) + \mathbb{E}_\pi[c(s, a)] \]

- **Cost Function** \(c(s) \)
- **Environment (MDP)**
- **Reinforcement Learning (RL)**
- **Optimal policy** \(\pi \)

Policy: mapping from states to actions
E.g., \((S_0 \rightarrow a_1, S_1 \rightarrow a_0, S_2 \rightarrow a_0) \)

- **States** \(S \)
- **Actions** \(A \)
- **Transitions:** \(P(s' | s, a) \)
Imitation

Input: expert behavior generated by π_E

$$\{(s_0^i, a_0^i, s_1^i, a_1^i, \ldots)\}_{i=1}^{n} \sim \pi_E$$

Goal: learn cost function (reward) or policy

(Ng and Russell, 2000), (Abbeel and Ng, 2004; Syed and Schapire, 2007), (Ratliff et al., 2006), (Ziebart et al., 2008), (Kolter et al., 2008), (Finn et al., 2016), etc.
Behavioral Cloning

- Small errors compound over time (*cascading errors*)
- Decisions are purposeful (*require planning*)
Inverse RL

- An approach to imitation
- Learns a cost c such that

$$
\pi_E = \arg \max_{\pi} \mathbb{E}_{\pi} [c(s, a)]
$$
Problem setup

\[RL(c) = \arg \min_{\pi \in \Pi} -H(\pi) + \mathbb{E}_\pi [c(s, a)] \]

Cost Function \(c(s) \)

Reinforcement Learning (RL)

Optimal policy \(\pi \)

Environment (MDP)

Inverse Reinforcement Learning (IRL)

Expert’s Trajectories \(s_0, s_1, s_2, \ldots \)

Cost Function \(c(s) \)

(\textit{Ziebart et al., 2010; Rust 1987})

Everything else has high cost

Expert has small cost
Problem setup

Cost Function $c(s)$ → Reinforcement Learning (RL) → Optimal policy π

Environmental (MDP) → Inverse Reinforcement Learning (IRL)

Expert's Trajectories s_0, s_1, s_2, \ldots

Convex cost regularizer

$$\text{IRL}_\psi(\pi_E) = \arg\max_{c \in \mathbb{R}^S \times A} -\psi(c) + \left(\min_{\pi \in \Pi} -H(\pi) + \mathbb{E}_\pi[c(s, a)] \right) - \mathbb{E}_{\pi_E}[c(s, a)]$$

(similar wrt ψ)
Combining $\text{RL} \circ \text{IRL}$

$\rho_{\pi} =$ occupancy measure $=$ distribution of state-action pairs encountered when navigating the environment with the policy

$\rho_{\pi E} =$ Expert’s occupancy measure

Theorem: ψ-regularized inverse reinforcement learning, implicitly, seeks a policy whose occupancy measure is close to the expert’s, as measured by ψ^* (convex conjugate of ψ)

$$\text{RL} \circ \text{IRL}_\psi(\pi_E) = \arg\min_{\pi \in \Pi} -H(\pi) + \psi^*(\rho_{\pi} - \rho_{\pi E})$$
Takeaway

Theorem: ψ-regularized inverse reinforcement learning, implicitly, **seeks a policy whose occupancy measure is close to the expert’s**, as measured by ψ^*

- Typical IRL definition: finding a cost function c such that the expert policy is uniquely optimal w.r.t. c

- Alternative view: IRL as a procedure that tries to induce a policy that matches the expert’s occupancy measure (generative model)
Special cases

\[RL \circ IRL_\psi (\pi_E) = \arg \min_{\pi \in \Pi} -H(\pi) + \psi^*(\rho_\pi - \rho_{\pi_E}) \]

- If \(\psi(c) = \text{constant} \), then \(\rho_{\tilde{\pi}} = \rho_{\pi_E} \)
 - Not a useful algorithm. In practice, we only have sampled trajectories
- **Overfitting**: Too much flexibility in choosing the cost function (and the policy)
Towards Apprenticeship learning

- Solution: use features $f_{s,a}$
- Cost $c(s,a) = \theta \cdot f_{s,a}$

$$\text{IRL}_\psi(\pi_E) = \arg \max_{c \in \mathbb{R}^{S \times A}} -\psi(c) + \left(\min_{\pi \in \Pi} -H(\pi) + \mathbb{E}_\pi[c(s,a)] \right) - \mathbb{E}_{\pi_E}[c(s,a)]$$

Only these “simple” cost functions are allowed:

- $\psi(c) = \infty$
- $\psi(c) = 0$

Linear in features: $\psi(c) = 0$

All cost functions:
Apprenticeship learning

• For that choice of ψ, $\text{RL} \circ \text{IRL}_\psi$ framework gives apprenticeship learning

\[
\text{RL} \circ \text{IRL}_\psi(\pi_E) = \arg \min_{\pi \in \Pi} -H(\pi) + \psi^*(\rho_\pi - \rho_{\pi_E})
\]

• Apprenticeship learning: find π performing better than π_E over costs linear in the features
 – Abbeel and Ng (2004)
 – Syed and Schapire (2007)
Issues with Apprenticeship learning

• Need to craft features very carefully
 – unless the true expert cost function (assuming it exists) lies in C, there is no guarantee that AL will recover the expert policy

• $\text{RL} \circ \text{IRL}_\psi(\pi_E)$ is “encoding” the expert behavior as a cost function in C.
 – it might not be possible to decode it back if C is too simple
Generative Adversarial Imitation Learning

• **Solution**: use a more expressive class of cost functions

\[
\psi_{GA}(c) \triangleq \begin{cases}
\mathbb{E}_{\pi_E}[g(c(s, a))] & \text{if } c < 0 \\
+\infty & \text{otherwise}
\end{cases}
\]

where \(g(x) = \begin{cases}
-x - \log(1 - e^x) & \text{if } x < 0 \\
+\infty & \text{otherwise}
\end{cases} \)
Generative Adversarial Imitation Learning

- $\psi^* = \text{optimal negative log-loss of the binary classification problem of distinguishing between state-action pairs of } \pi \text{ and } \pi_E$
Generative Adversarial Networks

Figure from Goodfellow et al, 2014
GAIL

Differentiable function D

D tries to output 0

Sample from expert

Differentiable function D

D tries to output 1

Sample from model

Differentiable function P

Black box simulator

Generator G

Simulator (Environment)

Ho and Ermon, Generative Adversarial Imitation Learning
How to optimize the objective

• Previous Apprenticeship learning work:
 – Full dynamics model
 – Small environment
 – Repeated RL

• We propose: gradient descent over policy parameters (and discriminator)

Properties

• Inherits pros of policy gradient
 – Convergence to local minima
 – Can be model free

• Inherits cons of policy gradient
 – High variance
 – Small steps required
Properties

• Inherits pros of policy gradient
 – Convergence to local minima
 – Can be model free

• Inherits cons of policy gradient
 – High variance
 – Small steps required

• Solution: trust region policy optimization
TRPO
Results
Results

Input: driving demonstrations (Torcs)

Output policy:

From raw visual inputs

Li et al, 2017. InfoGAIL: Interpretable Imitation Learning from Visual Demonstrations
Experimental results
Latent structure in demonstrations

Human model

Latent variables z | Policy

Environment

Observed Behavior

Semantically meaningful latent structure?
InfoGAIL

Latent structure

Add Smiling

Remove Smiling

Add Eyeglass

Remove Eyeglass

Latent variables z

Policy

Environment

Observed Behavior

Infer structure

Maximize mutual information

Observed data
\[L_I(\pi_\theta, Q_\psi) = \mathbb{E}_{c \sim p(c), a \sim \pi_\theta(\cdot|s,c)} \left[\log Q_\psi(c|s,a) \right] + H(c) \leq I(c; s, a) \]
Synthetic Experiment

Demonstrations

GAIL

Info-GAIL
Li et al, 2017. InfoGAIL: Interpretable Imitation Learning from Visual Demonstrations

InfoGAIL

Latent variables z
Policy
Environment
Trajectories

Pass left (z=0)
Pass right (z=1)
Multi-agent environments

What are the goals of these 4 agents?
Problem setup

Cost Functions
- \(c_1(s,a_1) \)
- \(c_N(s,a_N) \)

MA Reinforcement Learning (MARL)

Environment (Markov Game)

Optimal policies \(\pi_1 \)

Optimal policies \(\pi_K \)

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0,0</td>
<td>10,10</td>
</tr>
<tr>
<td>L</td>
<td>10,10</td>
<td>0,0</td>
</tr>
</tbody>
</table>
Song, Ren, Sadigh, Ermon, Multi-Agent Generative Adversarial Imitation Learning
Environments

Demonstrations

MAGAIL
Environments

Demonstrations

MAGAIL
Conclusions

• IRL is a dual of an occupancy measure matching problem (generative modeling)
• Might need flexible cost functions
 – GAN style approach
• Policy gradient approach
 – Scales to high dimensional settings
• Towards unsupervised learning of latent structure from demonstrations