VAEs and GANs

Mihaela Rosca @elaClaudia

Thanks to Shakir Mohamed, Balaji Lakshminarayanan

What are the biggest problems with training GANs?

Maximum likelihood

Find the model which gives highest likelihood to the data.

$$\operatorname{argmax}_{\theta} \mathcal{E}_{x \sim p^*} \log p_{\theta}(x)$$

Maximum likelihood

Find the model which gives highest likelihood to the data.

Leverage underlying data structure in generative process.

$$p_{\theta}(\mathbf{x}) = \int p_{\theta}(\mathbf{x}|\mathbf{z})p(\mathbf{z})d\mathbf{z}$$

Variational autoencoders

DeepMind D.P. Kingma, M. Welling: Auto-Encoding Variational Bayes

Variational autoencoders

Variational autoencoders

Inference

Learning distributions over representations.

Why:

- quantifying uncertainty
- imposing prior structure over learned representations

Imposing prior structure over representations

Higgings et all, beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework

VAE distribution matching in visible space

Data

VAE samples

VAE distribution matching in latent space

Low posterior VAE samples

VAEs match marginal distributions by matching conditional distributions.

VAEs match **marginal** distributions by using **explicit** distributions.

GANs

- Marginal distribution matching
- Implicit distributions

Combining GANs and VAEs

The promise of VAE-GAN hybrids

Improve sample quality

Improve representation learning

The promise of VAE-GAN hybrids

Improve sample quality

Improve representation learning

VAE-GAN hybrids

- Adversarial Autoencoder
- Adversarial Variational Bayes
- VEEGAN
- ALI/BiGAN
- AlphaGAN

VAE-GAN hybrids via density ratios

Estimate the ratio of two distributions only from samples, by building a binary **classifier** to distinguish between them.

Do VAE-GAN hybrids improve inference?

Adversarial autoencoders

Replace KL with a discriminator matching marginal distributions

Marginal distribution matching in latent space. Implicit encoder distribution.

The effect of adversarial training on bounds

Rosca, Lakshminarayanan, Mohamed: Distribution matching in variational inference

Classifier probabilities can be used for learning, but not for estimation.

The effect of adversarial training on representations

Learned VAE representations are sparse.

Learned AAE representations are not sparse.

Large latent sizes

AAE

Do VAE-GAN hybrids improve generation?

VAE - GAN Hybrid (VGH)

Marginal matching and implicit distributions using GANs both in latent and visible space.

Joint space hybrids - VEEGAN

Directly match in **joint** space.

O DeepMind

Srivastava et all: VEEGAN: Reducing Mode Collapse in GANs using Implicit Variational Learning

Improving GAN stability

Improving GAN stability

Jiwoong Im et all.: Quantitatively Evaluating GANs With Divergences Proposed for Training

DeepMind

Improving GAN diversity

Improving VAE sample quality

VAE

VEEGAN

Improving GAN sample quality

DCGAN

VEEGAN

At present, VAE-GAN hybrids do not improve distribution matching in latent and visible space.

Wait - how about CycleGAN?

Zhu, Park, Isola, Efros: Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

But...

- Image to image translation versus image generation
 - No latent variables
 - More constrained
 - Easier to do architecture search

Currently, VAE -GANs do not deliver on their promise to stabilize GAN training or improve VAEs.

Currently, VAE -GANs do not deliver on their promise to stabilize GAN training or improve VAEs.

If you want good samples, use GANs. If you care about representation learning, use VAEs.

THANK YOU

Credits

Shakir Mohamed, Balaji Lakshminarayanan

Additional Credits